
An Extensible Service Development Toolkit to Support
Earth Science Grids

JASON COPE,a HENRY M. TUFO,ab AND MATTHEW WOITASZEKa

aDepartment of Computer Science, University of Colorado at Boulder, Boulder, CO 80309, USA
bComputational and Information Systems Laboratory, National Center for Atmospheric Research, Boulder, CO 80305 USA

ABSTRACT

Grid-enabled Earth Science applications and tools are beginning to use
web services to integrate distributed resources and legacy applications.
Unfortunately, each application requires substantial effort to implement
Grid functionality before addressing application-specific requirements.
In an effort to help Earth Science application developers more rapidly de-
velop these web services, we have created an extensible service provider
toolkit (ESP). The toolkit provides the foundation to develop specialized
services for Earth Science Grids, including legacy application and com-
putational resource services. To demonstrate the functionality of ESP, we
re-developed several existing web services and illustrate ESP’s benefits
of reduced software development time and software reuse.

1 Introduction

Grid solutions have been proposed to make managing complex work-
flows easier for Earth Scientists to manage and execute. However, these
solutions are often:

• developed separately and in different software environments

• difficult to integrate with other Grids

• difficult to extend for other uses.

To eliminate the repetition of Grid-enabling legacy applications and
accelerate service development, we have created an extensible service
provider toolkit (ESP). This toolkit, consisting of Java base classes and
WSDL definitions, provides extensible application control, data transfer,
and application execution functionality using the Globus Toolkit[2]. By
using ESP,

• the legacy Grid application developer may focus on application-
specific logic instead of re-implementing simple Grid tasks

• we can achieve a 1.2 - 6x reduction in developed software over our
previous service development methods

• the performance overhead of the software features and techniques
we use are negligible when compared to other web service over-
head costs.

2 Extensible Service Provider Toolkit

In order to quickly develop services that can reuse software components
and leverage software relationships, we developed an extensible toolkit
and library of software components called ESP that support enabling
legacy applications and resources on the Grid. Our work is similar to
the web component architecture[6, 7] since both areas of research focus
on the development of extensible, specialized, and reusable components
and services.

ESP is composed of four libraries of components that can be extended
for a specific applications needs:

• a collection of web services that manage various Grid tasks

• a collection of web service resources that store dynamic data related
to the tasks

• a communication library that provides tools for describing interac-
tions with the services

• an interface library that provides methods for invoking the ser-
vices.

These libraries contain the WSDL and Java source to implement the var-
ious services or provide additional support.

2 Extensible Service Provider Toolkit (cont.)

2.1 Web Service Library

We observed several operational relationships during development of
several legacy application services for our SOA. We leveraged these rela-
tionships to develop extensible application management, workflow man-
agement, and service management service hierarchies (see the following
UML diagram).

2.2 Web Service Resource Library

Similar to the web service library, we leveraged structural relationships
in the web service resource properties to create an extensible library of
web service resource properties (see the following UML diagram).

2.3 Communication Library

The goal of the communication library is to create a flexible and expres-
sive communication framework for use by Grid applications and ser-
vices. We use object marshaling techniques to communicate data be-
tween services. This library provides

• a hierarchy of base messages for developers to extend more com-
plex messages from

• methods to marshall or unmarshall message objects to and from
strings

• a generic message class that dynamically re-constructs or generates
messages based on an XSD definition of the message class and sim-
plifies the definition of operations in the service WSDL.

2.4 Interface Library

We developed an interface library to support dynamic, maintainable, and
scalable client-service integration. The generic interface included in this
library can invoke operations of services that fit the current ESP service
model. The supporting classes provide the query and execute operations
necessary to find, bind to, and execute ESP-based web services.

3 Case Study: Applying ESP

Using ESP, we developed application services to manage common legacy
Earth Science applications, including Daymet[4], Biome-BGC[5], the Par-
allel Ocean Program (POP)[3], and the Community Atmosphere Model
(CAM)[1]. We evaluated these ESP-based services for software develop-
ment and invocation overhead.

3 Case Study: Applying ESP (cont.)

3.1 Extensible Service Development

We evaluated the software development overhead of ESP by analyzing
the total amount of source code required to implement the legacy appli-
cation services using ESP. To evaluate the WSDL definitions of the ser-
vices, the total number of XML elements and attributes required to im-
plement the application services was counted and are displayed in the
following table as (element, attribute) tuples.

ESP Legacy Improvement (Legacy
ESP

)

BaseSOA (98, 159) - -
BaseEXE (90, 149) - -
Daymet (27, 45) (165, 282) (6.11x, 6.27x)

POP (27, 45) (165, 282) (6.11x, 6.27x)
BiomeBGC (27, 45) (165, 282) (6.11x, 6.27x)

CAM (27, 45) (165, 282) (6.11x, 6.27x)

Total (296, 488) (660,1128) (2.23x, 2.31x)

To evaluate the web service implementations, the total amount of Java
source lines of code (SLOC) required to implement the services was mea-
sured.

ESP Legacy Improvement (Legacy

ESP
)

BaseSOA 497 - -
BaseEXE 408 - -
Daymet 533 1095 2.05x

POP 444 915 2.06x
BiomeBGC 615 1088 1.77x

CAM 447 914 2.04x

Total 2944 3539 1.20x

3.2 Performance Analysis

The execution performance of ESP-based services was also analyzed to
determine the impacts that specialization and extension have on execu-
tion performance. We developed a simple service that executed a linear
computational kernel and we studied the performance characteristics of
this ESP-based service using varying workloads and amounts of inheri-
tance.

Performance of ESP−based Services Using Varying Amounts of Extension

M
et

ho
d

E
xe

cu
tio

n
T

im
e

(n
s)

1

10

100

1000

Loop Interations

0 1 2 4 8 16 32 64

0
1
2
4
8

Levels of Inheritance

16
32
64
128
256

From these tests, we found that

• there is a minimal amount of overhead when small amounts of ex-
tension are used (1 - 16 levels)

• there is a noticeable amount of overhead when large amounts of
extension are used (32 - 256 levels), but it is quickly amortized as
the amount of work is increased

• other web service costs, such as HTTP (20ms) and HTTPS (117ms)
invocation overhead, outweigh the software overhead of ESP.

4 Future Work

Future work for ESP includes

• adding support for web service libraries in other implementation
languages (C, Python, and Perl)

• developing a more robust web service composition framework

• exploring web service choreography and orchestration tools

• applying ESP to other scientific disciplines beyond the Earth Sci-
ences.

5 Conclusions

We have shown that our approach to support legacy Earth Science ap-
plications and resources in service oriented Grids through the use of an
extensible service provider toolkit known as ESP

• can decrease the amount of software to develop or maintain

• does not impose a significant overhead to execute when used in
moderation

• imposes execution overhead that is negligible when compared to
other costs of web service invocation.

Acknowledgements

University of Colorado computer time was provided by equipment
purchased under DOE SciDAC Grant #DE-FG02-04ER63870, NSF ARI
Grant #CDA-9601817, NSF sponsorship of the National Center for Atmo-
spheric Research, and a grant from the IBM Shared University Research
(SUR) program. NASA has provided funding for the Grid-BGC project
through the Advanced Information Systems Technology Office (NASA
AIST Grant #NAG2-1646) and the Terrestrial Ecology Program.

References
[1] Collins, W., Rasch, P., Boville, B., Hack, J., McCaa, J., Williamson, D., Kiehl,

J., Briegleb, B., Bitz, C., Lin, S., Zhang, M., and Dai, Y. Description of
the NCAR Community Atmosphere Model (CAM 3.0). NCAR Tech. Note
NCAR/TN-464+STR, 226 pp. 2004.

[2] Globus. The Globus Project, 2006, www.globus.org.

[3] Parallel Ocean Program User Guide, v 2.0. Los Alamos National Laboratory,
2003.

[4] Thornton, P.E., S.W. Running. An improved algorithm for estimating inci-
dent daily solar radiation from measurements of temperature, humidity, and
precipitation. Agricultural and Forest Meteorology, 93: 211-228, 1999.

[5] Thornton, P.E., Law, B.E., Gholz, H., Clark, K., Falge, E., Ellsworth, D.,
Goldstein, A., Monson, R., Hollinger, D., Falk, M., Chen, J., and Sparks, J.
Modeling and measuring the effects of disturbance history and climate on
carbon and water budgets in evergreen needleleaf forests. Agriculture and
Forest Meteorology 113 (2002), 185-222.

[6] Yang, J. and Papazoglou, M., Web Component: A Substrate for Web Service
Reuse and Composition, Proceedings of the 14th Conference on Advanced
Information Systems Engineering, 2002.

[7] Yang, J. Developing a framework for analyzing service composition, reuse
and specialization. Communications of the ACM. Vol 46, 10. pp 35 - 40. 2003.

